J. Pharm. Pharmacol. 1982, 34: 210 Communicated October 14, 1981 0022-3573/82/030210-01 \$02.50/0 © 1982 J. Pharm. Pharmacol.

3-Allyl analogues of fentanyl

A. F. CASY^{*}, F. O. OGUNGBAMILA, School of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath, BA2 7AY, U.K.

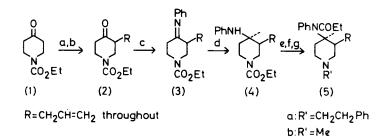
The proposal that the narcotic analgesic fentanyl represents a variant of 4-arylpiperidine analgesics and may thus be classified with pethidine and its reversed ester (Casy 1978), is supported by the fact that the influence of 3-methyl substituents on potency (substantial rise for methyl *cis* to the 4-aryl group while a *trans* substituent has little influence) is the same in the two classes of analgesic (Casy 1973; Van Bever et al 1974). Since the effect on potency of 3-allyl in reversed esters of pethidine differs radically from that of methyl (potency raised over ten fold by allyl *trans* to 4-aryl and depressed by a *cis* substituent) (Bell & Portoghese 1973; Iorio et al 1973), we have examined the 3-allyl analogue of fentanyl to investigate further comparative structure-activity relationships in the two groups of analgesic.

The 3-allyl analogue (5a), m.p. 106–108 °C (Found: C, 70.07; H, 7.69: N, 6.34. $C_{25}H_{33}N_2OC1.H_2O$ requires C, 69.60; H, 8.12; N, 6.50%) was made from 1-carbethoxy-4-piperidone by the sequence (1) through (5a). The corresponding *N*-methyl derivative (5b), m.p. 135–136 °C (Found: C, 66.74: H, 8.67; N, 8.62. $C_{18}H_{27}N_2OC1$ requires C, 66.96; H, 8.43; N, 8.68%) was made similarly from 3-allyl-1-methyl-4-piperidone (Bell & Portoghese 1973). Reduction of the anil (3) was highly stereoselective and only the *cis* 3-allyl diastereoisomer was isolated in each case. Details of synthesis and evidence of stereochemistry (based on ¹H and ¹³C n.m.r. data) will be reported elsewhere.

The *cis* 3-allyl analogue of fentanyl (5a) proved to be 0·13 to 0·14 times as potent as the parent compound (ED50 mg kg⁻¹ 0·08 for 5a and 0·011 for fentanyl, iv route) in rats by the tail-withdrawal test, a result in close correspondence with the influence of a *cis* 3-allyl group on the potency of the reversed ester of pethidine (approx. 10 fold decrease). The substantially lower activity of the *N*-methyl derivative (5b)

* Correspondence.

in the same test (ED50 10 mg kg⁻¹) further illustrates the importance of the contribution of the *N*-phenethyl feature of fentanyl to activity (Casy et al 1969).


Thus data on the effects of 3-substitution (methyl and allyl) so far available support the view of fentanyl and pethidine-related analgesics sharing common drugreceptor association modes. Results on studies of phenolic analogues of the two series further corroborate this argument in that 3-hydroxyphenyl congeners of fentanyl (Lobbezoo et al 1980), the reversed ester of pethidine (Portoghese et al 1981) and alphaprodine (unpublished results) are all inferior in opiate receptor affinity and/or antinociceptive potency to respective parent compounds with unsubstituted phenyl substituents. These last results are in sharp contrast to findings in rigid analgesics of the morphine, morphinan and 6,7-benzomorphan class in which the presence of a meta-placed phenolic group is essential if high potency is to be achieved.

We thank Mr K. Schellekens of Janssen Pharmaceutica for the pharmacological results.

REFERENCES

Bell, K. H., Portoghese, P. S. (1973) J. Med. Chem. 16: 203–205

- Casy, A. F. (1973) in: Featherstone, R. M. (ed.) Guide to Molecular Pharmacology and Toxicology, Part 1. Marcel Dekker, New York, p. 252 and references there cited
- Casy, A. F. (1978) Prog. Drug. Res. 22: 149-227
- Casy, A. F., Hassan, M. M. A., Simmonds, A. B., Staniforth, D. (1969) J. Pharm. Pharmacol. 21: 434-440
- Iorio, M. A., Damia, G., Casy, A. F. (1973) J. Med. Chem. 16: 592–595
- Lobbezoo, M. W., Soudijn, W., van Wijngaarden, I. (1980) Eur. J. Med. Chem. 15: 357-361
- Portoghese, P. S., Alreja, B. D., Larson, D. L. (1981) J. Med. Chem. 24: 782-787
- Van Bever, W. F. M., Niemegeers, C. J. E., Janssen, P. A. J. (1974) Ibid. 17: 1047–1051

Reagents: (a) pyrrolidine (gives enamine); (b) allyl bromide; (c) aniline-p-toluene sulphonic acid; (d) $NaBH_4$; (e) KOH-isopropanol; (f) $PhCH_2CH_2Br-K_2CO_3$; (g) $(EtCO)_2O$.